TropoExport

OPERATING MANUAL

Academy of Science Institute of Physics Laboratory of Optics of Scattering Media Minsk, The Republic of Belarus

Rev. 1.0

TropoExport Operating Manual

Table of Contents

Welcome to TropoExport
Hardware and software requirements
Requirements for hardware
Requirements for software
Purpose of the program
Common user interface view
Loading database
Selecting profile to view
Setting left and right boundaries
Changing datagrid field values10
Parameters of photo-receive modules1
Plot smoothing1
Base correction1
Reference point and aerosol lidar ratio14
Relative errors1
Using Gaussian random number generator1
Plot area manipulations1
Plot normalization1
Quick reper positioning1
Set restricted field of view
Zero line up and down2
Selecting atmosphere model
Calculating algorithm
Input signal24
Calculated signal2
Reference point
Molecular model of atmosphere2
Optical molecular thickness

TropoExport Operating Manual

Calculating profile of molecular extinction	29
Calculating molecular optical thickness	30
Calculating molecular lidar backscatter ratio	31
Calculating profile of molecular backscatter	33
Calculating profile of effective lidar signal	34
Calculating profile of backscatter lidar ratio	35
Calculating profile of effective lidar signal error dispersion	36
Saving results	38
Getting program version	40
Predefine values and coefficients for calculations	41

Welcome to TropoExport

Thank you very much for using **«TropoExport»** - Error of Dispersion Calculating Program.

We believe that you'll quickly feel comfortable with **«TropoExport»**.

We even think you will enjoy it soon.

This manual will let you get acquainted with the basic functionality of «TropoExport».

Let's have a look at the user interface to get started...

Use the table of contents on the left to navigate by clicking on it.

Hardware and software requirements

Requirements for hardware

- CPU at least 1 GHz;
- RAM volume mostly defined by the number of records in database. Recommended at least 2 GB;
- free HDD space mostly defined by the size of databases;
- SVGA True Color Graphics Adapter with resolution 1024x786 pixels at least.

Requirements for software

- Microsoft Windows XP and above;
- Microsoft Excel and Access 2000 and above;
- Microsoft Visual C++ 2005 redistribution libraries (must be installed separately);
- escape.dll library (included with «TropoExport» installer);
- CIRA.xls file (included with «TropoExport» installer);
- Config_ID.xls file (included with «TropoExport» installer);
- noise.xls file (included with «TropoExport» installer);
- template.xls file (included with **«TropoExport»** installer).

Purpose of the program

The **«TropoExport»** program is intended to calculate average signals according specific algorithms and error of dispersion of measured effective lidar signals with possibility to export results as Access databases or/and Excel spreadsheets for use with other third party applications, like LiRIC, for example.

Common user interface view

Common view of the program is represented at figure 1.

Figure 1

Where:

- 1. Toolbar area;
- 2. Calculated values area;
- 3. Loaded database display grid;
- 4. Raw lidar backscatter profile(s) area;
- 5. Calculated error' dispersion profile(s) area.

Loading database

Press «Load DB» button (figure 2) and select desired database (figure 3).

	-
Eiguro)
rigui e 4	<u> </u>

Figure 3

Selecting profile to view

First record (profile) from entire datagrid recordset will be highlighted and selected for viewing when a new database is loaded.

Any other record can be selected, as shown in the figure 4.

	Mark	Local ID	DStart	TStart	TStop	Accum	Wavelen	Polar	Bgd	Zenith	Altitude	Step	Nonlinear	Nonsync	Sync	Reg Num	Left	Right	Base	RD1	RD2	RG1	RG2	RG3	RP LI	REOMT	RE OAT	RE GBS	CIMEL	d-Factor	k-Factor	*
0		mi1209#0002.000	2012-09-03	06:21:31	06:23:11	1000	1064.0	0	2.37e+002	0.0	200.0	15.00	0.000000	0.00	0.00	164	0	1999	0.00	199	399	2	4	8	599 50.	00 0.10	0.02	0.1	0.20	0.00	0.00	
1		mi1209#0002.001	2012-09-03	06:21:31	06:23:11	1000	355.0	0	4,12e+002	0.0	200.0	15.00	0.000000	0.00	0.00	161	0	1999	0.00	199	399	2	4	6	599 50.	00 0.10	0.02	0.1	0.20	0.00	0.00	
2			2012-09-03	96(21:35																												
3		mi1209#0002.003	2012-09-03	06:21:31	06:23:11	1000	532.0	2	1.13e+003	0.0	200.0	15.00	0.000000	0.00	0.00	163	0	1999	0.00	199	399	2	- 4	8	599 50.	00 0.10	0.02	0.1	0.20	0.00	0.00	
4		mi1209#0002.004	2012-09-10	07139:03	07:46:41	3997	1064.0	0	1,70e+002	0.0	200.0	15.00	0.000000	0.00	0.00	164	0	1999	0.00	199	399	2	4	8	599 50.	00 0.10	0.02	0.1	0.20	0.00	0.00	
5		mi1209#0002,005	2012-09-10	07:39:03	07:46:41	4043	355.0	0	5.93e+002	0.0	200.0	15.00	0.0.2000	0.00	0.00	161	0	1999	0.00	199	399	2	4	8	599 50.	00 0.10	0.02	0.1	0.20	0.00	0.00	
6		mi1209#0002.006	2012-09-30	07:39:03	07:46:41	4008	532.0	3	1.22e+002	0.0	200.0	15.00	0.000000	0.00	0.00	162	0	1999	0.00	199	399	2	- 4	8	599 50.	00 0.10	0.02	0.3	0.20	0.00	0.00	
7		mi1209#0002.007	2012-09-10	07:29:03	07:46:41	4003	532.0	2	5.83e+002	0.0	200.0	15.00	0.000000	0.00	0.00	163	0	1999	0.00	199	399	2	4	8	599 50.	00 0.10	0.02	0.9	0.20	0.00	0.00	-

Figure 4

Setting left and right boundaries

Left and right margins of profile can be artificially excluded from processing by use of buttons «Left Stop» and «Right Stop» respectively, as shown in figures 5-8.

Figure 8

Compare to <u>figure 1</u>.

Changing datagrid field values

Only fields with blue background in datagrid are editable.

At first, let's introduce raw (figure 9) and processed (figure 10) profiles to compare with.

Figure 10

Parameters of photo-receive modules

Photo-receive modules characteristic fields are represented in the figure 11.

Nonlinear	Nonsync	Sync
0.000000	0.00	0.00
0.000000	0.00	0.00
0.000000	0.00	0.00
0.000000	0.00	0.00
0.000000	0.00	0.00

One of the main parameters of the registration of lidar signals is the linearity or nonlinearity of the output characteristics of transformation («Nonlinear» field), i.e., the output signal dependencies from the intensity of light. Linearity of the output characteristic is very important to select the operating mode of photo detectors. This characteristic is measured by a special method for each photo detector module.

The «Sync» field describes "white noise" interferences (figure 12).

The «Nonsync» field describes hardware interferences (figure 12).

Try to play with these values by yourself to see effect.

Figure 12

Plot smoothing

Every plot can be smoothed for three regions defined by delimiters (strobe number, bin) «RD1» and «RD2».

Smoothing is carried out on (RGx * 2 + 1) points for each of the regions and carefully sewn together at the delimiters of «RD1» and «RD2», as shown in the figures 13 and 14.

RD1	RD2	RG1	RG2	RG3	RP
199	399	2	4	8	599
199	399	2	4	8	599
199	399	2	4	8	599
199	399	2	4	8	599
300	1200	4	10	20	599
199	399	2	4	8	599
199	399	2	4	8	599
199	399	2	4	8	599

Figure 14

Compare to figure 10.

Base correction

It is possible to adjust the background manually with positive or negative value in the «Base» field, as shown in the figure 15.

Compare to figure 9.

Reference point and aerosol lidar ratio

The reference point (another words, strobe or bin) «RP» field in the sounding track has to be selected from the following considerations:

- minimum aerosol scattering;
- sufficient accumulation to exclude random noise.

Aerosol lidar ratio «LR» may be changed, if known. By default it is equals to 50.

TropoExport Operating Manual

Revision 1.0

Relative errors

Estimated relative errors for optical molecular thickness («RE_OMT» field), optical aerosol thickness («RE_OAT» field) and lidar ratio («RE_LR» field) may be specified in the respective columns of the datagrid, as shown in figure 16 (shown values by default).

RE OMT	RE OAT	RE LR
0.10	0.02	0.10
0.10	0.02	0.10
0.10	0.02	0.10
0.10	0.02	0.10
0.10	0.02	0.10

Figure 16

«RE_OAT» field contains total aerosol optical thickness provided by EARLINET sun photometer (or another way) if available, otherwise is equals to 0.2 by default.

Using Gaussian random number generator

The current algorithm may takes into consideration the white noise provided by Gaussian number generator. In this case fields <u>«d-Factor» and «k-Factor»</u> are editable, otherwise – not.

«d-Factor» means amplitude multiplier coefficient for noise values from noise.xls table.

«k-Factor» is amplitude distortion coefficient.

For this kind of correction is necessary to fill columns for all channels in a noise.xls table (attached as a template) from the site <u>http://www.random.org/gaussian-distributions/</u> or similar one. Be sure to use precise volume of strobes available.

For a detailed understanding should contact the appropriate formula in <u>«Calculating algorithm»</u> topic.

Plot area manipulations

As can be seen from <u>figure 1</u>, two plots are displayed in the top and bottom areas. Manipulations applied to one of the areas are automatically transferred to another.

Bottom area represents plot calculated as: (RawSignal - Background) * pow(Distance, 2) / AtmosphereCorrectionCoefficient.

Top area represents plot calculated as: Error of Dispersion of Effective Lidar Signal.

Plot normalization

Normalization of plots is performed with respect to their maximum value in the range whose right boundary is defined by special control (figure 17), as shown in the figure 18.

Compare to figure 9.

Quick reper positioning

There are two ways to positioning reper:

- 1. click the right mouse button to set the reper position directly at the desired point;
- 2. scroll the mouse wheel to increment or decrement reper position smoothly.

Set restricted field of view

There are two ways to set desired field of view:

- 1. using sliders in a usual manner;
- 2. press the left mouse button and hold it down while dragging the mouse to define selection to view the plot, as shown in the figure 19.

Double click the left mouse button to quickly restore view area to default.

Zero line up and down

Zero line (in white) can be redefined with «Enlarge» (figure 20) and «Shrink» (figure 21) buttons, as shown in the figure 22.

Figure 20

Figure 21

This feature is very useful for observing the behavior of the signal's tail around zero line.

Compare to <u>figure 9</u>.

Selecting atmosphere model

Press «Select Model» button (figure 23) to choose the desired atmosphere model (figure 24).

Note that custom model may be used if own meteo station available. In such a case Excel spreadsheet should be prepared as per CIRA.xls.

Error dispersion profiles will be recalculated in real-time mode.

Calculating algorithm

The algorithm was developed by:

Dr. Anatoli Chaikovsky,

Head of laboratory, The State Scientific Institution "B.I. Stepanov Institute of Physics of The National Academy of Sciences of Belarus" (IPNASB) 68, Nezavisimosti av., 220072, Minsk, The Republic of Belarus Phone: (+375-17)-2949004 Fax: (+375-17)-2840879 E-mail 1: mailto:chaikov@dragon.bas-net.by E-mail 2: mailto:chaikov@light.basnet.by

Input signal

Main definitions:

Raw signal plus background. May be joined or averaged profile obtained by «Synthesizer» program: $P_j^*(n)$

Background signal: B_i^*

The beginning and the end strobe numbers of measured array: N1 and N2

Strobe number *n* from the flash moment: $n^0 = n - N1$

Left N_i and right N_i boundaries as described in topic <u>«Setting left and right boundaries»</u>.

Calculated signal

$$S_{j}^{*}(n) = rel(n) \times \left(1 - \frac{\left(N_{ref} - n\right) \times k_{factor}}{N_{ref}}\right) \times \left(\hat{P}_{j}^{*}(n^{0} = n - N_{1}) - B_{j}^{*} - base + delta(n) \times d_{factor}\right) \times (n \times |\Delta z|)^{2}$$

If using <u>Gaussian random number generator</u> «d-Factor» and «k-Factor» will be taken from datagrid, otherwise equals to zero.

<u>«base»</u> is additional compensation background (if needed) taken from datagrid.

The signal is already smoothed as described in the topic <u>«Plot smoothing»</u>.

«rel(n)» and «delta(n)» are taken from «noise.xls» spreadsheet, otherwise equals to 1.

TropoExport Operating Manual

Reference point

Set reference point as described in the topic <u>«Reference point»</u>.

It can be placed outside boundaries N_j 1 and N_j 2.

Reference point value calculates as:

$$\hat{S}_{j}(n = N_{rep,j}) = \frac{1}{21} \times \sum_{n^{0} = N_{rep,j} - N_{1} - 10}^{n^{0} = N_{rep,j} - N_{1} - 10} \hat{P}_{j}^{*}(n) \times (n \times |\Delta z|)^{2}$$

Molecular model of atmosphere

Molecular model of atmosphere calculates as:

 $\beta_{m,j}(n) = \beta_{m,j}(h=0) \times d_m(ns \times \cos(Z_0) + H0) / d_m(0)$

where Z_0 is the angle between the vertical and the main axis sensing (current angle for synthesized profile).

Optical molecular thickness

Optical molecular thickness inside $[n - N_j]$ interval calculates as:

if *n* < N_j

$$\tau_{m,j}(z_n, z_N) = \sum_{i=n+1}^{i=N_j} p_m \times \beta_{m,j}(z_i) \times \Delta z_i \times \frac{CosZ_0}{CosZ_i} = \sum_{i=n+1}^{i=N_j} p_m \times \beta_{m,j}(z_i) \times \left| \Delta z \right| \times \frac{CosZ_0}{CosZ_i}$$

 $\text{if } n > N_j$

$$\tau_{m,j}(z_n, z_N) = \sum_{i=N_j}^{i=n-1} p_m \times \beta_{m,j}(z_i) \times \Delta z_i \times \frac{CosZ_0}{CosZ_i} = \sum_{i=N}^{i=n-1} p_m \times \beta_{m,j} \times \left| \Delta z \right| \times \frac{CosZ_0}{CosZ_i}$$

if $n = N_j$

 $\tau_{m,j}(z_n,z_N)=0$

TropoExport Operating Manual

Calculating profile of molecular extinction

Molecular extinction coefficient $\sigma_{m,j}(z_n,\lambda)$ for channel j at a distance $l_n = ns$ calculates as:

$$\sigma_{m,j}(z_n,\lambda) = 287.05287 \times C_s(\lambda) \times \hat{d}_m \times \left(ns \times \cos(Z_0) + H_0\right)$$

where

 $H_n = ns \times \cos(Z) + H_0)\,$ - strobe height;

Z - zenith angle;

 \boldsymbol{H}_0 - altitude over sea level;

 $\hat{d}_m(H_n)$ - molecular atmosphere density taken from standard or CIRA model.

 $C_s(\lambda)$ parameter defined as:

$$C_{s}(\lambda) = 0.01 \left(a + b \times \lambda^{c} \right)^{-\frac{1}{d}} [K / (Pa \times m)]$$
$$\lambda [nm]$$
$$a = -21.693798344267826$$
$$b = 0.00087342438635830215$$
$$c = 2.2366776150227192$$

Calculating molecular optical thickness

Molecular optical thickness $\tau_{m,j}(z_n, z_N)$ inside range $\lfloor n - N_j \rfloor$ calculates as:

 $\text{if } n \langle N_j$

$$\tau_{m,j}(z_n, z_N) = \sum_{i=n+1}^{i=N_j} \sigma_{m,j}(z_i, \lambda) \times \Delta z_i \times \frac{CosZ_0}{CosZ_i} = \sum_{i=n+1}^{i=N_j} \sigma_{m,j}(z_i, \lambda) \times \left| \Delta z \right| \times \frac{CosZ_0}{CosZ_i}$$

if $n \rangle N_j$

$$\tau_{m,j}(z_n, z_N) = \sum_{i=N_j}^{i=n-1} p_m \times \beta_{m,j}(z_i) \times \Delta z_i \times \frac{CosZ_0}{CosZ_i} = \sum_{i=N}^{i=n-1} \sigma_{m,j}(z_i, \lambda) \times |\Delta z| \times \frac{CosZ_0}{CosZ_i}$$

if $n = N_j$

 $\tau_{m,j}(z_n,z_N)=0$

Calculating molecular lidar backscatter ratio

$$P_m(\lambda) = \frac{8\pi}{3} \times k_{C,T}(\lambda, \Delta \lambda)$$

where

 $k_{C,T}(\lambda, \Delta \lambda)$ - correction factor which takes into account rotation Raman component of the lidar signal:

$$k_{C,T}(\lambda,\Delta\lambda) = k_C(\lambda) - \Delta k(\lambda) \times W(\lambda,\Delta\lambda)$$

 $k_C(\lambda), \Delta k$ defined as:

$$k_C(\lambda) = \sqrt{a_1 + a_2\lambda^2 + \frac{a_3}{\lambda^2} + \frac{a_4}{\lambda^4}}$$

where:

 $a_1 = 1.0779363729155738$ $a_2 = -1.4114618324124403E-11$ $a_3 = 896.96823089693635$ $a_4 = 52062355.046277404$

$$\Delta k(\lambda) = a \times \lambda^{b + \frac{c}{\lambda}} + d$$

where:

a= 5.371109819764088 b= -1.48754255361213716 c= 81.002440828712594 d= 0.024633566682161448

TropoExport Operating Manual

Revision 1.0

 $W(\lambda, \Delta \lambda)$ parameter calculates as:

$$W(\lambda, \Delta \lambda) = W(x) = 1 - \exp\left(-\frac{x^2}{3528}\right)$$

where:

$$x = 10^7 \left(\frac{1}{\lambda} - \frac{1}{\lambda + \frac{\Delta \lambda}{2}} \right)$$

 $\Delta \lambda\,$ - spectral bandwidth of interference filter taken from Config_ID.xls spreadsheet.

Calculating profile of molecular backscatter

$$\beta_m(z_n,\lambda) = \frac{1}{P_m(\lambda)} \times \sigma_{m,j}(z_n,\lambda)$$

Calculating profile of effective lidar signal

$$L^{*}(\lambda_{j}, z_{n}) \equiv \mathbf{L}^{*}(\lambda_{j}, z_{n}, \mathbf{R}_{N}, S^{*}(\lambda_{j}, z_{n})) = \frac{\left(P_{j}^{*}(n) - B_{j}^{*}\right)\left(n\left|\Delta z\right|\right)^{2}}{\hat{S}(N)} R_{j}(z_{N}) \exp\left(-2\tau_{m, j}(z_{n}, z_{N})\right)$$

Calculating profile of backscatter lidar ratio

$$\hat{R}(\lambda_j, z_n) \approx S^* \left(\lambda_j, z_n, z_N \right) \times R_j(z_N) \exp\left(-2\tau_{m,j}(z_n, z_N) \frac{\beta_m^j(z_N)}{\beta_m(\lambda_j, z_n)} \times \exp\left(-2\hat{p} \left| \Delta z \right| \sum_{i=z_N}^{i=z_n-1} \left(\hat{R}(\lambda_j, z_i) - 1 \right) \times \beta_m(\lambda_j, z_i) \right)$$

where:

 $\Delta\,$, $\,\chi\,$, $\,\hat{p}\,\,{\rm and}\,\,\mu\,\,$ are defined in «prm.ini» file (see below).

by default:

molecular scatter depolarization

$$\chi(\lambda_j = 532nm) = \frac{\beta_{\perp m}(\lambda_2, z_n)}{\beta_{\uparrow m}(\lambda_3, z_n)} \approx 0.014;$$

aerosol scatter integral depolarization

 $\Delta = 0.1$

hardware polarization degree

 $\mu = 0.02$ (by default)

 $\hat{p}_{_{j}}$ = 50 (by default) - aerosol lidar ratio, depends of polarization:

$$polar = 0 \Rightarrow \hat{p}_j = p$$

 $polar = 1 \Rightarrow R = 1$

 $polar = 2 \Rightarrow \hat{p}_{j} = \frac{1 + \Delta}{1 + \chi} \frac{\chi + \mu}{\mu + \Delta} p$

$$polar = 3 \Rightarrow \hat{p}_j = \frac{1+\Delta}{1+\chi}p$$

Calculating profile of effective lidar signal error dispersion

$$\Omega_{L}^{j}(z_{n},z_{n}) = \left\langle \delta_{L,n}^{j} \delta_{L,n}^{j} \right\rangle \approx S^{*2} \left(\lambda_{j}, z_{n}, z_{N} \right) \exp\left(-4\tau_{m,j}(z_{n}, z_{N})\right) \times \\ \times \left(\frac{\left\langle \delta^{2}(S_{n}^{*j}) \right\rangle}{\left(S_{n}^{*j}\right)^{2}} + \frac{\left\langle \delta^{2}(\hat{R}(\lambda_{j}, z_{N})) \right\rangle}{\left(\hat{R}(\lambda_{j}, z_{N})\right)^{2}} + \frac{\left\langle \delta^{2}(\beta_{m}(\lambda_{j}, z_{N})) \right\rangle}{\left(\beta_{m}(\lambda_{j}, z_{N})\right)^{2}} + \frac{\left\langle \delta^{2}(\hat{\beta}(\lambda_{j}, z_{n}, C_{\nu}(z_{n}))) \right\rangle}{\left(\hat{\beta}(\lambda_{j}, z_{n}, C_{\nu}(z_{n}))\right)^{2}} \\ + 4\left\langle \delta^{2}(\tau_{m,n}(\lambda_{j})) \right\rangle + 4\left\langle \delta^{2}(\hat{\tau}_{a,n}(\lambda_{j}, z_{N}, C_{\nu}(z_{n}))) \right\rangle$$

where:

$$\frac{\left\langle \delta^2(S_n^*) \right\rangle}{\left(S_n^*\right)^2} = v^2 + \frac{q^2 N_j^*(n)}{A (2M+1) \left(N_j^*(n) - F_j^*\right)^2} + \frac{u^2}{\left(N_j^*(n) - F_j^*\right)^2 (2M+1)}$$

v - nonlinerity

q - nonsynchron noise

u - synchron noise ($u^2 = 0$ for photon counters)

Relative square deviation of lidar backscatter ratio in reference point (0.0004 by default):

$$\frac{\left\langle \delta^2(\hat{R}(\lambda_j, z_N)) \right\rangle}{\left(\hat{R}(\lambda_j, z_N)\right)^2} = \text{re2_bsr_ref}$$

Relative square deviation of molecular backscatter in reference point (0.0004 by default):

$$\frac{\left\langle \delta^2(\beta_m(\lambda_j, z_N)) \right\rangle}{\left(\beta_m(\lambda_j, z_N)\right)^2} = \text{re2_ms_ref}$$

Relative square deviation of lidar ratio:

$$\frac{\left\langle \delta^2(\hat{\beta}(\lambda_j, z_n, C_v(z_n))) \right\rangle}{\left(\hat{\beta}(\lambda_j, z_n, C_v(z_n))\right)^2} = \theta^2(\lambda_j) \frac{\left(\hat{R}(\lambda_j, z_n) - 1\right)^2}{\hat{R}^2(\lambda_j, z_n)} + \frac{\text{re2_ms_ref}}{\hat{R}^2(\lambda_j, z_n)}$$

where

 $\theta(\lambda_i) = \text{re_gbs}$ - relative error of lidar ratio (0.05 by default).

Estimation error of optical molecular thickness (ReOMT = 0.1 by default):

$$\delta(\tau_{m,n}(\lambda_j)) = \operatorname{Re}OMT \times \tau_{m,n}(\lambda_j)$$

Estimation error of optical aerosol thickness (ReOAT = 0.02 by default):

$$\delta(\tau_{m,n}(\lambda_j)) = \operatorname{Re}OAT \times \left| \frac{z_N - z_n}{z_N} \right|$$

Saving results

It's possible to process multiple profiles at once. Simply fill «Mark» field with any number (figure 25 and 26).

1	lark	Local ID	DStart	TStart	TStop	Accum	Wavelen	Polar	figd	Zenith	Altitude	Step	Nonlinear	Nonsync	Sync	Reg Num	Left	Right	Base	RD1	RD2 R	G1 R	G2 R0	3 RP	LR	RE OMT	RE OAT	RE GBS	CIMEL	d-Factor	k-Factor
5	1	mi1209=0002.000	2012-09-03	05:21:31	06:23:11	1000	1064.0	0	2.37e+002	0.0	200.0	15.00	0.000000	0.00	0.00	164	0	1999	0.00	199	399	2	4	8 599	50.00	0.10	0.02	0.10	0.20	0.00	0.00
		m1209#0002.001	2012-09-03	06:21:31	06:23:11	3000	355.0	0	4.12e+002	0.0	200.0	15.00	0.000000	0.00	0.00	161	0	1999	0.00	199	399	2	4	8 599	50.00	0.10	0.02	0.10	0.20	0.00	0.00
	1																														0.00
		mi1209#0002.003	2012-09-03	06/21:31	06:23:11	1000	532.0	2	1,13e+003	0.0	200.0	15.00	0.000000	0.00	0.00	163	0	1999	0,00	199	399	2	4	8 599	50,00	0.10	0.02	0.10	0.20	0.00	0.00
SIL	1	mi1209#0002.004	2012-09-10	07:39:03	07:46:41	3997	1064.0	0	1,70e+002	0.0	200.0	15.00	0.000000	0,00	0,00	164	0	1999	0.00	199	399	2	4	8 599	50.00	0.10	0.02	0.10	0.20	0.00	0.00
		mi1209#0002.005	2012-09-10	07:39:03	07:46:41	4043	355.0	0	5.93e+002	0.0	200.0	15.00	0.000000	0.00	0.00	161	0	1999	0.00	199	399	2	4	8 599	50.00	0.10	0.02	0.10	0.20	0.00	0.00
6	1	mi1209#0002.006	2012-09-10	07:39:03	07:46:41	4008	532.0	3	1.22e+002	0.0	200.0	15.00	0.000000	0.00	0.00	162	0	1999	0.00	199	399	2	4	8 595	50.00	0.10	0.02	0.10	0.20	0.00	0.00
2		mi1209#0002.007	2012-09-10	07:39:03	07:46:41	4003	532.0	2	5.82e+002	0.0	200.0	15.00	0.000000	0.00	0.00	163	0	1999	0.00	199	399	2	4	8 599	50.00	0.10	0.02	0,10	0.20	0.00	0.00

Figure 25

Figure 26

Press «Save DB» button (figure 27) and select format to save (figure 28).

Figure 27

TropoExport Operating Manual

Figure 28

There are two ways to store processed data:

- 1. into original database;
- 2. or/and export to Excel spreadsheet.

PS: CSV files currently not supported due to very large volume.

Important: while saving into the original database take into account that:

- an unlimited number of processed profiles with different parameters can be stored;
- first time processed profile stores into the original record;
- other ones are stored as additional records (not editable, but with own ID) appended to the end and marked with light green background, so it's possible to compare different conditions of processing (figure 29).

	Mark	Local ID	DStart	TStart	TStop	Accum	Wavelen	Polar	Bgd	Zenith	Altitude	Step	Nonlinear	Nonsync	Sync	Reg Num	Left	Right	Base	RD1	RD2	RG1 F	1G2	163 A	PLR	RE ONT	RE OAT	RE GB5	CIMEL	d-Factor	k-Factor *
257		mi1203#0002.257	2012-03-26	07:26:38	07:59:59	20000	1064.0	0	1.70e+002	0.0	200.0	15.00	0.000001	0.05	0.50	164	0	1999	0.00	199	399	2	4	8 5	99 50.0	0 0.10	0.02	0.10	0.20	0.00	0.00
258		mi1203#0002.258	2012-03-26	07:26:38	07:59:59	20000	\$32.0	2	4.64e+002	0.0	200.0	15.00	0.000001	0.05	0.50	263	0	1999	0.00	199	399	2	4	8 5	99 50.0	0.10	0.02	0.10	0.20	0.00	0.00
259		m1203#0002.259	2012-03-25			29000		3	1.1984002	0.0	20010	15.00	0.000001		0.50	392		1999	0.00					1 5	99 50.0		0.02	0.40			0.00
260		mi1203#0002.260	2012-03-26	07:26:38	08:00:00	20000	355.0	0	4.82e+002	0.0	200.0	15.00	0.000010	0.10	1.00	351	0	1999	0.00	199	399	2	4	8 5	99 50.0	0 0.10	0.02	0.10	0.20	0.00	0.00
261		mi1203#0002.000.01	2012-03-05	08:22:56	08:31:42	5261	1064.0	0	1.65e+002	0.0	200.0	15.00	0.000001	0.05	0.50	354	0	1999	0.00	199	399	2	4	8 5	99 50.0	0 0.10	0.02	0.10	0.20	0.00	0.00
262	1	m1203#0002.000.01	2012-03-05	08:22:56	08:31:42	5261	1064.0	0	1.65e+002	0.0	200.0	15.00	0.000001	0.05	0.50	164	0	1999	0.00	300	600	24	õ	16 5	99 50.0	0 0.10	0.02	0.10	0.20	0.00	0.00
263	1	m1203#0002.000.02	2012-03-05	08:22:56	08:31:42	5261	1064.0	0	1.65e+002	0.0	200.0	15.00	0.000001	0.05	0.50	354	0	1999	0.00	300	600	0	0	0 5	99 50.0	0 0.10	0.02	0.10	0.20	0.00	0.00
264		mi1203#0002.000.03	2012-03-05	08:22:56	08:31:42	5261	1064.0	0	1.65e+002	0.0	200.0	15.00	0.000001	0.05	0.50	364	0	1999	0.00	300	600	2	4	8 S	99 50.0	0 0.10	0.02	0.10	0.20	0.00	0.00

Figure 29

After saving the «Mark» field will be filled in pink background.

Combined records created by «Synthesizer» program are marked with yellow background in the same field.

Getting program version

Press «About» button (figure 30) and discover current program version (figure 31).

Figure 30

Figure 31

Predefine values and coefficients for calculations

While first time starting program «prm.ini» file will be created automatically.

It consists of a number important predefined parameter in specific sections that can be modified manually.

[LOCATION]

manager_ID=cha (Chaikovsky, for example)

manager_location=mi (Minsk)

executive_ID=0001 (operator's ID)

[PARAMETERS]

reference_point=599

lidar_ratio_mol=8.739425 (molecular lidar ratio)

lidar_ratio_aero=50.000000 (aerosol lidar ratio)

delta=0.100000 (see topic «Calculating profile of backscatter lidar ratio»)

hi=0.014000 (the same)

mu=0.020000 (the same)

re_oat=0.020000 (see topic <u>«Calculating profile of effective lidar signal error dispersion»</u>)

re_omt=0.100000 (the same)

re_gbs=0.100000 (the same)

re2_bsr_ref=0.000400 (the same)

re2_ms_ref=0.000400 (the same)

cimel_ot=0.200000 (optical thickness measured by sun photometer)

noise=1 (using Gaussian random number generator, 0 – not using)

rd1=199 (first smoothing delimiter)

rd2=399 (second smoothing delimiter)

rg1=2 (first smoothing gate)

rg2=4 (second smoothing gate)

rg3=8 (third smoothing gate)